Sharp Dimension Estimates of Holomorphic Functions and Rigidity
نویسندگان
چکیده
Let M be a complete noncompact Kähler manifold of complex dimension n with nonnegative holomorphic bisectional curvature. Denote by Od(M) the space of holomorphic functions of polynomial growth of degree at most d on M. In this paper we prove that dimCOd(M) ≤ dimCO[d](C), for all d > 0, with equality for some positive integer d if and only if M is holomorphically isometric to C. We also obtain sharp improved dimension estimates when its volume growth is not maximal or its Ricci curvature is positive somewhere.
منابع مشابه
Univalent holomorphic functions with fixed finitely many coefficients involving Salagean operator
By using generalized Salagean differential operator a newclass of univalent holomorphic functions with fixed finitely manycoefficients is defined. Coefficient estimates, extreme points,arithmetic mean, and weighted mean properties are investigated.
متن کاملA special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملAn equivalent representation for weighted supremum norm on the upper half-plane
In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...
متن کاملA remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane
In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.
متن کاملOrthogonal Polynomials and Sharp Strichartz Estimates
Orthogonal polynomials have been used to produce sharp estimates in Harmonic Analysis in several instances. The first most notorious and original use was in Beckner’s thesis [1], where he proved the sharp Hausdorff-Young inequality using Hermite polynomial expansions. More recently, Foschi [4] used spherical harmonics and Gegenbauer polynomials in his proof of the sharp Tomas-Stein adjoint Four...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008